Graded Microstructure and Mechanical Performance of Ti/N-Implanted M50 Steel with Polyenergy

نویسندگان

  • Jin Jie
  • Tianmin Shao
چکیده

M50 bearing steels were alternately implanted with Ti⁺ and N⁺ ions using solid and gas ion sources of implantation system, respectively. N-implantation was carried out at an energy of about 80 keV and a fluence of 2 × 1017 ions/cm², and Ti-implantation at an energy of about 40-90 keV and a fluence of 2 × 1017 ions/cm². The microstructures of modification layers were analyzed by grazing-incidence X-ray diffraction, auger electron spectroscopy, X-ray photoelectron spectroscopy, and transmission electron microscopy. The results showed that the gradient structure was formed under the M50 bearing steel subsurface, along the ion implantation influence zone composed of amorphous, nanocrystalline, and gradient-refinement phases. A layer of precipitation compounds like TiN is formed. In addition, nano-indentation hardness and tribological properties of the gradient structure subsurface were examined using a nano-indenter and a friction and wear tester. The nano-indentation hardness of N + Ti-co-implanted sample is above 12 GPa, ~1.3 times than that of pristine samples. The friction coefficient is smaller than 0.2, which is 22.2% of that of pristine samples. The synergism between precipitation-phase strengthening and gradient microstructure is the main mechanism for improving the mechanical properties of M50 materials.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ti-Cr-N Coatings Deposited by Physical Vapor Deposition on AISI D6 Tool Steels

In this study, physical vapor deposition (PVD) Ti-Cr-N coatings were deposited at two different temperatures 100 and 400ºC on hardened and tempered tool steel substrates. The influence of the applied deposition temperature on the physical and mechanical properties of coatings such as roughness, thickness, phase composition, hardness and Young’s modulus were evaluated. Phase compositions were st...

متن کامل

Characterization of TiN, CrN and (Ti, Cr) N Coatings Deposited by Cathodic ARC Evaporation

In this investigation PVD Ti-Cr)N coatings were deposited on hardened and tempered tool steel substrates using reactive arc evaporation. Physical and mechanical properties of coatings such as roughness, thickness, phase composition, hardness and modulus young and coefficient friction were evaluated. Phase compositions were studies by X-ray diffraction method. The surface microstructure and morp...

متن کامل

Mechanical Behavior of Hybrid Fiber Reinforced High Strength Concrete with Graded Fibers

Brittleness, which was the inherent weakness in High Strength Concrete (HSC), can be avoided by reinforcing the concrete with discontinuous fibers. Reinforcing HSC with more than one fiber is advantageous in an overall improvement of the mechanical performance of the composite. In this experimental study, Hybrid Fiber Reinforced High Strength Concrete (HyFR-HSC) mixes were formed by blending si...

متن کامل

Effect of the TLP process parameters on microstructure, mechanical properties and corrosion resistance of 316L stainless steel to pure commercial titanium joint with pure copper interface

In this research, effect of time and temperature of TLP process on the microstructure, mechanical properties and corrosion resistance of CP-Ti to 316L stainless steel joint evaluated. For this purpose pure copper foil with 100 µm thickness was used as interlayer and joining process carried out at 950˚C, 1000˚C and 1050˚C and for 90, 120 and 150 minutes. After the joining process, shear and micr...

متن کامل

Effect of the TLP process parameters on microstructure, mechanical properties and corrosion resistance of 316L stainless steel to pure commercial titanium joint with pure copper interface

In this research, effect of time and temperature of TLP process on the microstructure, mechanical properties and corrosion resistance of CP-Ti to 316L stainless steel joint evaluated. For this purpose pure copper foil with 100 µm thickness was used as interlayer and joining process carried out at 950˚C, 1000˚C and 1050˚C and for 90, 120 and 150 minutes. After the joining process, shear and micr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2017